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Dielectric Loss @ Microstrip Ljnes

TED L. SIMPSON AND BANGJUH TSENG

Absfruct—A new technique is presented for calculating dielectric

loss in rnicrostrip lines. Numerical results for several “@erent sub=

strates are included, These are compared with other available re-

sults and exper~entaf data.

I. INTRODUCTION

A number of papers have been published in recent years treating

losses in microstrip transmission lines [1]–[3]. But most of these

efforts have been directed at the study of conductor loss. Dielectric

losses aresimply calculated byeither empirical formulas [4], [5]

or plane-wave approximation [6]. The reason behind this is, of

course, for low-loss substrates, conductor loss is dominant. But in

the case of monolithic MIC’S, where substrates such as silicon or

germanium are used, dielectric loss becomes the dominant one, and

therefore has to be treated more rigorously.

Inthk short paper, anew method forcalculating dielectric loss in

microstiip ispresentecl. This method is basically an extension of the

moment method which has been used widely to calculate other

microstrip characteristics such as impedances [7] and equivalent

circuits of right-angled bends ~8].

II. THEORY AND NUMERICAL FORMULATION

The attenuation cQnstant due to imperfect dielectric in a medium is
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where

P = +X’
Zo

is the total power.

We may define a normalized a; as

1-

ad Jad.= —==.u (1)

In (l), byassuming avoltage Vacross thecenter conductor and

ground plane, the characteristic impedance ZO can be easily calcu-

latedby the moment method. Theonly pr~blem isto evaluate the

integral .fEzds.

In applying the,moment method to calculate rnicrostrip imped-

ance, the charge density distribution on the center conductor is

obtained as an intermediate result. Once this charge density dis-

tribution is known, then the potential at a point P(r) inside the

dielectric can be written as

~(r) =
/

G(r,r’)v(r’) dr’. (2)
canter conductor
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If the center conductor is divided into NW sufficiently n?~rrow

strips, then the charge density on each strip can be considered as a

constant, and we can rewrite (2)”as

Theintegralin (3) may be expressed as

( m +X2s x,y;~ ),H =
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where

K=~
e,+l

H. = (2n + l)H

and

A= x-x,

B=x–x,

as shown in Fig. 1.

Although E can be obtained by differentiating (4), in doing so,

more terms will be generated in the infinite series, and thk increases

the co~puting time considerably. Therefore, it is computed numer-

ically as follows.

The total integration area over which the integral in (1) is to be

carried out is divided into 2M X 2N subareas (AX. AY), and the

potential at every corner of each subarea is calculated. We then

define two vectors, U and V as depicted in Fig. 2. The vector normal

to both U and V is

and I E 12is simply (see Appendix I)
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Fig. 1. Definition of variables A and B in (4).

(5)



SHORT PAPERs

Z=Q
1

107

Fig. 3. Parameters inv61ved in riumerical intf >gration,

Fig. 2. Definition of vectors U and V.

gration area is less than one percent of that inside this area for

w/H > 0.4. The errors of results calculated under these conditions

are estimated to be less than –2.5 perdent (as compared to that of

finer subdivision and larger total integration area) for 0.4< W/H <

6.0 and 2< k, <11.7. The computer results obtained. by this methbd

for several different dielectric constants are compared with another

theory [4] in Table I. The calculated attenuation constant of a

microstrip line on silicon substrate (e, = 11.7) is alscl compared with

the experimental data from Hyltin [9] in Fig. 4.

These numerical calculations were carried out by ari IBM 360/75

computer. The computing time for each structure W;M less than 5 s.

A Fortran source listing of this program is available by request

from the authors.

The integral in (1) simply becomes

III. NUMERICAL RESULTS

.
A computer program was written to carry out the ntimericl inte-

gration. After some investigations, the parameters NW, M, N, AW,

AX, and A Y (& shown in Fig. 2) were chosen under the following

criteria:

NW = 20, W/H <1

NW = 20 +5(W/H – 1), W/H >1 (6a)

N = H/W.NW (6b)

APPENDIX

Derjrmtion of (5): Assuming that each subarea is sufficiently small

that @(z,y) can be approximated locally by its tangent pl~ne, then

we can write

(6c)
@(z,’y) = .z(z,u) & UX + by + C,

where In vector notation, & plane with a normal vector N can be repre-

sented by the equation
K = 2.7 – 0.1+

(R– P).N=O

Aw = AX%AY. (6d)
where

It is worthwhile to point out that parameter Kin condition 6 (c)

which defines the total integration area for a specified NW, is

empirically chosen such that the summation of E9 outside the inte-

TABLE I

NORMALIZED fhmrfumioN CONSTANTS OF MICROSTRIP LINES

Cr=3.82

a
~dn adnb

T

596.96 594.56

611.13 606.02

622.59 616.18

632.28 625.48

666.67 659.53

689.18 683.59

705.71 700.79

71a.58 714.34

728.97 724.67

——

W/H

G

0.6

0.8

1.0

2.0

3.0

4.0

5.0

6.o
—

Cr=z. 22 cr=9.0 cr=ll.7

a
adn

406. S1

415.07

421.73

427.36

447.27

460.28

469. a2

h77.24

483.23

b
‘id n

405.03

411. s9

417.97

423.44

443.33

457.49

467,31

475.12

481.12

. cdn 9

359.69

366.76

372.46

377.27

394.55

405.45

413.62

419.97

425.10

b
u,J,i

~57.60

363.51

368.72

373.67

390.87

402.94

411.54

418.14

423.36

~dna

743.95

764.34

780.85

794.87

844.86

877.81

902.12

921.10

936.47

‘drib

743.8o

760.20

774.70

787,91

836.8i

871.21

a96.40

916.37

931.14

Note: ad. in decibel ohms.
‘ Resulte obtained by Schneider’s theory [4].
b Results obtained by numerical integration.
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_ Cmp.ted by numerical
integration

the point (z1,u1,z1) ison this plane.

Let

P-N = C,.

Resxstivity ohm-cm

Fig. 4. Microstrip line loss versus resistivity of thediele6tric substrates.

e, = 11.7.

Then

R*N = Cl

or

C, –xN. – Yivu
L?!(x,y) = @(x,y) =

N.

1E12=
N.# +NJ

Nz, -
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The Electric-Dipole Resonances of Ring Resonators of’

Very High Permittivity

M. VERPLANKEN AND J. VAN BLADEL, FELLOW, IEEE

Absfracf—The lowest confined mode in a coaxial ring reso:aator

is investigated. Data are given about the Q of the mode, the eigen-

electric dipole at resonance, and the structure of the electric field

surrounding the resonator. The data are valid for high, but finite

values of c,.

I. INTRODUCTION

In a previous paper [1], Van Bladel has shown that a dielectric

body of revolution [Fig. 1 (a)] admits, in the limit e, = Nz --+ co, a

resonant mode of the form

H~ = f?~(r,z)il.+ (1)

where & satisfies

In addition, L?%vanishes on the outer contour (c) and on the

z axis. The mode under discussion is a conjtned mode, which means

that it takes the value (1) in the dielectric, but vanishes outside S.

For such a case the boundary surface acts as a magnetic wall. ‘When

N is finite but large, the mode is found to radiate like an electric

dipole of moment j%. As a result, energy is lost by radiation, and a

finite Q affects the resonance. The value of Q is proportional with

NS, while it is proportional with N3 for a magnetic-dipole mode. The

strong increase of Q with N is the reason why the electric-dipole

mode is of interest for applications. We proceed to calculate & and

Q for the ring resonator shown in Fig. 1 (b). The limit form b = O

corresponds to a circular cylinder, a structure which is often used in

practice.

II. FORMULAS FOR DIPOLE MOMENT AND “Q

The determination of these quantities requires solution of the

following exterior potential problem [1]

v’+ = O outside S
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